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On Integral Groups. III: Normalizers 

By H. Brown, J. Neubuser and H. Zassenhaus 

Abstract. Methods for determining a generating set for the normalizer of a finite group 
of n X n integral matrices, i.e., an n-dimensional crystallographic point group, are dis- 
cussed. Necessary and sufficient conditions for the finiteness of such a normalizer are 
derived, and several examples of the application of the methods to cases when the normalizer 
is infinite are presented. 

This is the third in a series of papers dealing with the finite subgroups of GL(n, Z). 
In the first two papers [3], [4], we discussed the integral classification of these groups, 
and, in this paper, we consider their normalizers in GL(n, Z), which are needed, 
e.g., for the determination of the n-dimensional space groups [2], [17]. As in the 
previous two papers, the discussion results in a complete determination for the case 
n = 4. We refer to the first paper for basic definitions and notation. 

1. Introduction. For any finite subgroup G of GL(n, Z), i.e., an f.u. group, 
it is known that the normalizer N(G) of G in GL(n, Z) is finitely generated [15]. 

We assume that a representative set of the integral equivalence classes of the 
f.u. groups of dimension n is given. For the case n = 4, such a representative set has 
been determined [7], [8]. As the normalizers of integrally equivalent groups are also 
integrally equivalent under the same transformation, we only need determine the 
normalizers of such a representative set. In Section 2 of this paper, we show that a 
representative set can be so chosen that in fact it suffices to determine only the nor- 
malizers of the so-called Bravais groups in this set, as the normalizer of any other 
member of this set can be obtained by a finite algorithmic process which we describe. 

In Section 3 we determine fairly easily applied necessary and sufficient conditions 
for the normalizer of an f.u. group to be finite. For these groups, the normalizer 
can be read off from the subgroup lattices of the maximal n-dimensional f.u. groups. 
For n = 4, these lattices have been computed [7]. 

In Section 4, we consider "block triangular," i.e., reduced f.u. groups G, and we 
give some sufficient conditions for their normalizers N(G) to be of the same block 
triangular form. 

In Section 5, we give examples of some methods for finding generating sets of 
the normalizers when they are infinite. For the case n = 4, these methods suffice to 
determine all infinite normalizers. 

For dimensions 2, 3 and 4, representative sets of the Bravais groups together 
with generating sets for their normalizers will be listed in a subsequent paper. 
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2. Bravais Groups. 
(2.1) Let G be a subgroup of GL(n, Z). The set of all symmetric rational n X n- 

matrices X (or, equivalently, n-dimensional quadratic forms) satisfying 

(2.11) gtXg = X forallg C G 

forms a Q-vectorspace S(G). Note that (2.11) is valid if and only if it is valid for a 
set of generators of G. 

The set of all unimodular matrices h such that 

(2.12) htXh = X for all XC S(G) 

forms a subgroup B(G) < GL(n, Z), which we call the Bravais group of G. Note 
that G < B(G), and that (2.12) is valid for all X C S(G) if and only if it is valid for 
a Q-basis of S(G). Note also that G ? H implies S(H) ? S(G) and that S(B(G)) = 
S(G). Hence B(B(G)) = B(G). Therefore, we can call a subgroup B ? GL(n, Z) a 
Bravais group if B(B) = B. 

Let G _ GL(n, Z), y C N(G) and X S(G). Then y-' C N(G) and (ygy-')tXygy-' 
= X for all g C G. Hence, gt(ytXy)g ytXy, and ytS(G)y = S(G). For a Bravais 
group B, also the converse holds. For let ytS(B)y = S(B). Then, for any b C B and 
X E S(B), since y-tXy-' C S(B), we have (y-by)tX(y'by) = ytbt(y-`Xy')by 
= X, i.e., y-'by C B(B) = B. Hence y C N(B). From these two remarks we have 

(2.13) LEMMA. Let G ? GL(n, Z); then N(G) < N(B(G)). 
From now on, we shall confine our consideration to finite subgroups G of GL(n, Z). 

As is well known, a subgroup G of GL(n, Z) is finite if and only if S(G) contains a 
positive definite symmetric matrix [16]. Hence, in particular, if G is finite, so is B(G). 
From this we have 

(2.14) LEMMA. Let G be a finite subgroup of GL(n, Z). Then the index N(B(G)): 
N(G) is finite. 

Proof. As B(G) is finite, there are only finitely many subgroups of B(G) which 
are Z-equivalent to G. Let e be the orbit of G under transformation by elements 
from N(B(G)). ?- is finite and N(B(G)) is represented as a group of permutations 
on SZ. N(G) is the stabilizer of G in this permutation representation; hence N(B(G)): 
N(G) is finite. 

(2.2) Let Un, be a representative set of all Z-equivalence classes of finite subgroups 
of GL(n, Z). 

Let B' be Z-equivalent to a Bravais group B(G) of G ? GL(n, Z). Then, there 
exists a group G' < GL(n, Z) such that G' --z G and B(G') = B'. Hence, we can 
choose the set Us, in such a way that it satisfies the following property: 

(2.21) If G C Ung then B(G) C Un- 

From now on, we assume that we have a fixed set Un with property (2.21). For 
a Bravais group B, B C U,n, we define its family to consist of all G CE U, with B(G) 
= B. We shall describe in Section (2.3) how we obtained such a U,. for n = 4. Using 
property (2.21), we can obtain the normalizers of all groups in U, from the nor- 
malizers of the Bravais groups in Un Let G C Un. By Lemma (2.14), N(B(G)): N(G) 
is finite. Also, the normalizers of finite unimodular groups are finitely generated 
[15]. There are efficient procedures [6] to determine from a finite generating set 
Ig 1 * * * , gn } of N(B(G)) a set of coset representatives T = { r1, , r, } of the cosets 
of N(G) in N(B(G)). By Schreier's theorem [14], 
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N(G) = (r8g7.rig7' I - 1, , n, j,= 1, ,) 

where r,g, denotes the coset representative of the element r8gj in the set SY. As G is 
finite, there is an effective method to decide if a given element is in N(G) and, hence, 
since N(B(G)):N(G) is finite, an effective method to determine r8gj from r8gj. All 
these procedures have been implemented on a computer. 

(2.3) In dimension 4, from the application of existing computer programs, a 
listing of the lattices of subgroups of all Dade groups [12] with all Z-equivalence 
relations between these subgroups was available [7]. From this, a set U14 of repre 
sentatives of all Z-equivalence classes of finite subgroups of GL(4, Z) satisfying 
property (2.21) was determined [8]. For n = 4, among the 710 groups in U4, there 
are 64 Bravais groups. 

3. Finite Normalizers. 
(3.1) In this section, we shall find necessary and sufficient conditions for a finite 

subgroup G < GL(n, Z) to have a finite normalizer in GL(n, Z). 
(3.1 1) LEMMA. N(G) is finite if and only if Z(G), the centralizer of G in GL(n, Z), 

is finite. 
Proof. For y ? N(G), the correspondence p: y -> yp C Aut(G) defined by 

g(y'p) = yf gy is a homomorphism from N(G) into Aut(G). Since G is finite, so is 
Aut(G), and thus N(G):ker so is finite. The kernel of y is precisely Z(G), and the 
result follows. 

(3.2) We now consider Z(G) for a f.u. group G. 
Let C(G) = { Y E MnX (Z) I Yg = gY for all g E GI}, i.e., the commuting ring 

of G in Mnxn (Z). Then Z(G) is the unit group of C(G). Since C(G) is a Z-submodule of 
the finitely generated free Z-module Mnxn (Z), C(G) has a finite Z-basis which is also 
a Q-basis for CQ(G) = { Y E MnX (Q) I Yg = gY for all g E G }. Moreover, CQ(G) = 
QC(G) and C(G) is a subring with identity of the Q-algebra QC(G). Thus, C(G) is 
a Z-order in the classical sense, and QC(G) is a semisimple Q-algebra [1]. 

Since QC(G) is semisimple, by Wedderburn's structure theorems, 
s 

QC(G) = - Ai 

where each Ai is Q-isomorphic to a full matrix ring Mf i ><f,(D,) for some finite- 
dimensional division algebra Di over Q. Also, there exists a maximal Z-order, Z m ax, 
of QC(G) which contains C(G), and ZCmax can be decomposed as a ring theoretic 
direct sum 

(3.21) ?max _ E) ci 

where each Zi is a maximal Z-order in Mf,XJf,(D,) [9]. 
In general, if Z and D' are two orders over Z of equal (finite) rank such that 

e D Z1', then, trivially, the unit group U(ZS') of Z' is contained in the unit group 
U(Q) of SZ. Also, we have in this case: 

(3.22) LEMMA. U(Z): U(Z') is finite. 
Proof. Since e and Z?' are of equal rank, Z: V' is finite. More precisely, if 

e= J Zai and Z' = ?* Zbi where bi = Sk ci,a, then S.:Z' = Idet(cij)I. Let 
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A1, , A, be representatives of the isomorphism classes of Z-modules of order 
?D: Z'. Each submodule of e of index Z: Z' occurs as a kernel of a Z-epimorphism 
from ?C to one of the A,. Since e is free of finite rank, there are only finitely many Z- 
homomorphisms from e to each Ai. Thus, there are only finitely many submodules of 
?D of index Z: Z'. Left multiplication of these finitely many submodules by elements 
of U(Z) induces a finite permutation representation of U(Z). Since Z' is unital, 
the stabilizer of Z' in U(Z) is precisely U(Z2'), and hence U(Z): U(ZC') is finite. 

By this lemma, we have in our case Z(G) = U(C(G)) is finite if and only if U( max) 

is finite. As a consequence of (3.21), 

U(Zlmax) - ? UCQC), 

and thus Z(G) is finite if and only if each U(Z) is finite. There exists a maximal 
Z-order ZC< of Mf i ~xf,(Dt) such that Mf, X f,(Z) C C'_, and thus GL(fi, Z) C U(Z/) 
[9], [10]. Since Zi and Z' are both maximal Z-orders in Mf if,(D,), SZ: ' Q\S 
is finite. Also, if f, > 1, GL(f,, Z) contains elements of infinite order. Hence, we have 
as a necessary condition for the finiteness of Z(G) that f, = 1, i = 1, *I* , s. Note 
that in this case each Z, is a maximal order in Di. 

(3.3) We now seek conditions for the unit group U(Zi) of the maximal order 
sDi in the finite-dimensional division algebra Di over Q to be finite. 

(3.31) THEOREM [5]. Let D be a finite-dimensional division algebra over Q, and 
let Z be a maximal order in D. Then U(Z), the unit group of Z, is finite if and only 
if D is Q-isomorphic to Q, an imaginary quadratic extension of Q or a positive definite 
quaternion algebra over Q. 

It follows from this theorem that U(Z) is finite if and only if QZSi is one of the 
permissible types. 

(3.4) In order to apply these criteria to the unit group of C(G), we consider the 
behaviour of the natural representation 

A : g - g 

of G with respect to its reduction over Q. Let 

s 

'A = Ai f/ 

be a full reduction of A over Q where the A, are inequivalent irreducible representa- 
tions of G over Q with multiplicities f, > 0. Such a reduction can be obtained using 
character theory. It follows from a generalization of Schur's lemma [11] that, in the 
Wedderburn decomposition of QC(G), 

QC(G)_ 0? Mfjxfz(D), 

the division algebra D, can be chosen as the commuting algebra of Ai, i = 1, ., . 
Thus, the previous results yield 

(3.41) THEOREM. The unit group of C(G), and thus the normalizer of G in GL(n, Z), 
is finite if and only if 

(a) f, = 1, i = 1, . . , s. 
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(b) Each Di is one of the following three types: 
I. Q. 

II. An imaginary quadratic extension of Q. 
III. A positive definite quaternion algebra over Q. 

Let ni be the degree of the irreducible representation Ai of G over Q. The algebra 
Q A,(G) is a simple subalgebra of Mn7,n7(Q) [1]. The centre of Q A,(G), Z,, is a finite 
extension of Q, say of degree z,, and Q Ai(G) is isomorphic to a full ring of matrices 
of finite degree r, over a division algebra B, of dimension m' over Zi. Here, m, is 
the Schur index of A,. The numerical relation 

2 

ni = zim,ri 

holds [4]. From the theory of algebras, it is known that the dimension of the com- 
muting algebra, Di, over Q is equal to z,M2. In fact, Di is anti-isomorphic to B, [1]. 
Thus, condition (b) above is equivalent to 

(b') I. mi = 1, zi = 1. 
II. mi = 1, zi = 2, Z, imaginary quadratic. 

III. m, = 2, zi = 1, B, positive definite quaternion algebra. 
In the special case n = 4, the above criterion is very easy to apply. Trivially, 

for ni = 1, (b') is always satisfied; and using the methods of [4], one has 
ni = 2: (b') is always satisfied. 
ni = 3: (b') is satisfied if and only if 4,G is not a cyclic group. 
ni = 4: (b') is satisfied if and only if A,G is not a cyclic or a dihedral group. 
For n = 4, of the 64 Bravais groups in the list U4 of representatives of all integral 

classes, 38 have finite normalizers in GL(4, Z). 

4. Block Triangular Normalizers. Let G be a reduced f.u. group and A: G -*> G 
the natural representation of G. Say 

Ag= LAlg 
0 A2gj 

For u C N(G), let a be the automorphism of G induced by u, i.e., ga = u- gu. 
Then u- 1 Agu- 1 = A(ga) for every g in G. Thus, A is Z-equivalent as a representation 
to ai where ag = A(ga).* Let A,(ga) = a,(g), i = 1, 2, and 

yUii U12 _1= SUll U120 

U21 U22 u21 u2J 

be block decompositions of u and u-1 corresponding to the block pattern of /v. 
It follows directly that 1A2(g)u21 = u21al(g) and A2(g)u21 = ul1 Al(g) for every g 

in G. Hence, from a generalization of Schur's lemma, we have that if A1 and a2 

or Al and A2 have no Q-constituents (as representations) in common, then u2j = 

21 = 0, i.e., u is block triangular. 

* Note that the equivalence of two faithful representations A and A of a group G is a more restric- 
tive condition than the equivalence as groups of the images AG and WG. If A and A are equivalent 
representations, then, clearly, AG and aG are equivalent groups; but if AG and WG are equivalent 
groups, all that can be said is that for some a C Aut(G), A a and A are equivalent representations. 
Here A c(g) = A(ga). 
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For i = 1, 2, let x,, xj be the Q-characters of A, and A,, respectively, and let 
ki ki 

XA} = XA,, XZ, = ? 'Xii 
i=l i=l 

be their reductions into distinct irreducible Q-characters with positive multiplicities. 
By the definition of a,, x^, and xi must have the same reduction pattern, i.e., ki = ki 
and the irreducible characters can be ordered such that nii = iyj and dim xi = 

dim x: . 
For a in Aut(G), let Aa(g) = A,(ga). From the above comments, we have 
(4.11) THEOREM. If, for each a in the subgroup of Aut(G) induced by N(G), 

Xa#. PX6 , 1 < s < k1, 1 < t :< k2 

then N(G) is block triangular. 
The hypothesis of (4.11) is satisfied if /v fulfills the following condition: 
(4.12) (i) A1 and A2 have no Q-constituents in common. 
(ii) Whenever dim A18 = dim A2t, then nl8 : n2t, 1 < s < kl 1 < t < k2. 

To show this, assume, e.g., that A1, --Q A2t = A2 t and ni8 > n2 t. Since A and 
A' = 1A are Z-equivalent representations, the Q-constituents of A and a must be 
Q-equivalent in some order. Also, a1 and A2 have no Q-constituents in common. 
From nl8 > n2 t it follows that A18 --Q Air, some 1 ? r < ki, or A1, Q a2v, some 
v : t. Hence, a2t '.'Q A,r or a2t Q a2v, V :X t. This is a contradiction. 

The above condition is easily applied, particularly in the case n = 4. Of the 26 
classes of Bravais groups with infinite normalizers, 12 have block triangular nor- 
malizers and, in fact, satisfy this condition. 

5. Computational Methods for Determining Generators for Infinite Nor- 
malizers. Some Examples. 

(5.1) There are 26 classes of Bravais groups in 4 dimensions which have infinite 
normalizers. Of these, one is the group (-I4) which has normalizer GL(4, Z); three 
of these classes consist of irreducible groups which do not satisfy (3.41) and hence 
have infinite normalizers; 12 have reduced representatives which satisfy (4.11) and 
hence have block triangular normalizers; and 10 classes consist of reducible groups 
which do not satisfy (4.11) and do not have block triangular normalizers. 

In three cases Z(G), the centralizer of G, is naturally isomorphic to GL(2, R) 
where R is the ring of integers in the 4th or 6th cyclotomic field. For these cases, 
the following lemma is useful: 

(5.11) LEMMA. Let a e C be an algebraic integer of degree m such that Z[a] 
is a Euclidean domain. Let U be the unit group of Z[ae]. Then GL(2, Z[a]) is generated 
by the elements 

0 ] 0 -I g=9 '; h, L ~, i = ,09 ,m- 

tu = u E U; and vu =K u G U. 

Proof. GL(2, Z[ae]) = {A e M2X2(Z[a]) I det A ? U} . The map o: GL(2, Z[a]) 
U given by AX = det A is an epimorphism. 
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Let H = ker 4. Then the elements g, h, and t,. are in H, and GL(2, Z[a]): H = Ul. 
For any A = [ ] E H, 

rn-1 

rI (g3hJ)A= = 

and 

m-1 F a 
11 (hig3)ki A=L m-1 . 
i-O c+a ,a' 

7, =0o 

Now {a', Ott-l} forms a Z-basis for Z[a]. Thus, by premultiplication of A 
with matrices of the above type which are determined by the quotients in a Euclid's 
algorithm scheme for a and c, we can transform A into a matrix of the form [' J]. 
Since the premultiptication matrices and A are in H, [v V] must also be in H, i.e., 
xz = 1. Hence, x E U, say x = u, and z = u-. Premultiplication of U V] by t. 
transforms it into a matrix of the form [1 l]. Since the elements h-'g, i = 0, 
m - 1, generate all matrices of this latter form, g, and h, and the tf generate H. 
The set { v, I u E U } is clearly a set of coset representatives for H in GL(2, Z[a]), 
and the result follows. 

In several cases, Z(G) is naturally isomorphic to a subgroup T of GL(2, Z) where 
the entries of the matrices in T must satisfy certain congruence conditions. For these 
cases, the following two lemmas are useful: 

(5.12) LEMMA. Let a, b ( Z, b : 0. If a - b 1(2), then there is a Euclid's 
algorithm scheme for a and b in which all the quotients are even. 

This lemma is easily proved by noting that for two integers c, d with d I2 0 and 
c - d 1(2), if from the division algorithm we have c = dq + r, 0 < r < Idl with 
q =- 1(2), then c = d(q + d/ldl) + (r - jdl) with 0 < Jr - Idl I < Idj, and d - 

(r - Idl) -1(2). 
(5.13) LEMMA. Let a, b C Z, b # 0. Then there is a terminating Euclid's algorithm 

type scheme for a and b in which the quotient in each odd numbered step is a multiple Qf 3. 
Proof. Choose q, r C Z such that a = bq + r, O < r < Ibl, say q = 3t + k, 

k E {-1, 0, 1}. Setq, = 3tandr1 = r + kb.Thena = bq, + r, 0 < Hri < 12b1. 
If r, : 0, then 

b = kr1 + r2 with 0 < 1r21 < lbl if k # 0 

and 

b = (b/IbI)rl + r2 with 0 ? jr2f < Ibl if k = 0. 

Continuing in this manner, since Ibl > 1r21 > 1r4J > ... , we get the desired result. 
(5.2) Let G be a representative of one of the three irreducible 4-dimensional 

Bravais classes not satisfying (3.14). The reader is referred to [4] for the verification 
of the following observations about G. 

The centre of the Q-enveloping algebra of G is a real quadratic extension of Q, 
and G is a dihedral group of order 16, 20 or 24, say IGI = 2m. The cyclic subgroup 
of order m, SG, of G is also an irreducible f.u. group. Since there is only one Z- 
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equivalence class of the irreducible cyclic groups of order m, we may assume SG = 

(A) where A is the companion matrix of the mth-cyclotomic polynomial. 
Let K = Q(A). Then K is isomorphic to the mth-cyclotomic field. The ring of 

integers in K is Z[A] C M4X4(Z). Let U(A) be the unit group of Z[A]. From the 
Cayley-Hamilton theorem it follows that U(A) = K n GL(4, Z). Also, K is its own 
commuting algebra in M4,4(Q). Thus, U(A) = {X E GL(4, Z) I XA = AX}. 

The Galois group GK/Q of K over Q can be faithfully represented in GL(4, Z) 
in such a way that for any 6 E GK/Q, the action of 8 on K is the same as conjugation 
by the matrix corresponding to 8. Moreover, this representation can be determined 
constructively. Let H be the group of matrices corresponding to GK/Q, and let N C H 
be the matrix corresponding to the element of GK/Q induced by A - A-'. Since 
N 2 I4 and N-'AN = A-', we may assume that G has concrete representation 
G = (A, N). 

If X E N(SG), then X-1AX AA for some 8 E GK/Q. Hence X-1AX = T-1AT 
for some T E H, and XT-1 C U(A). Thus N(SG) = U(A) H. 

(5.21) (a) IGI = 16. 
U(A) = (A, I4 + A + A-') [13]. 
H = (N, N,) - 

C2 X C2 where N, is the matrix corresponding to A - * A'. 
Thus N(SG) = (G, N,, I4 + A + A-'). Now NN, = N1N and N(h + A + A-') = 

(h + A + A-')N. Hence N(G) = N(SG). 

(b) IGI = 20. 
U(A) = (A, A + A-') [13]. 
H = (N,) - C4 where N, is the matrix corresponding to A -, A7. 
N(G) = N(SG) = (A, A + A-, N,). 

(c) IGI = 24. 
U(A) = (A,I4+A) [13]. 
H = (N, N,) - C, X C2 where N, is the matrix corresponding to A-- A'. 

N(G) = N(SG) = (G, N,, I4 + A). 
(5.3) Let G # (-I4) be a representative of one of the ten classes of reducible 

Bravais groups not satisfying (4.11). From direct inspection of the list of 4-dimensional 
Bravais groups, G is a cyclic group of order 4 or 6, a dihedral group of order 8 or 
12 or a Klein 4-group.** 

(5.31) Let G be cyclic or dihedral. By inspection of the Bravais group list, the 
natural representation A of G may be assumed to have the form 

Ag = l 

L 0 A2 

where A, and A2 are Q-equivalent irreducible 2-dimensional representations of G. 
Q A,G and QA2G are Q-isomorphic simple algebras over Q. By Wedderburn, 

QAiG r M,r(B) where B is a finite-dimensional division algebra over Q. Let F 
be the centre of B, say B:F = f and let s be the Schur index of B. Then the relation 
2 = fs2r holds [1]. 

If G is cyclic, QA,G is commutative, and we have f = 2, s = r = 1. Thus QAiG 
- F, where F is an mth-cyclotomic field, m = 4 or m = 6. If G is dihedral, then 

* * A list of the Bravais groups in dimensions 2, 3 and 4, as well as their normalizers and other 
related information will be published in the near future. 
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Q4A,G is noncommutative, and we have f = s = 1, r = 2. Thus QA, G -M2,(Q). 
For any subgroup H < GL(n, Z), let C(H) denote the integral commuting algebra 

of H. The centralizer of H in GL(n, Z), Z(H), is the unit group of C(H). From the 
general theory of algebras, we have QC(A4G) is anti-isomorphic to B and from a 
generalization of Schur's lemma QC(G) ? M2,2(B). 

In the case G is cyclic, QC(G) - M2X2(F) where F:Q = 2. Hence QC(G):Q = 8. 
In the case G is dihedral, C(G) -M2X2(Q), and QC(G):Q = 4. 

(5.32) The Cyclic Case. Let IGI = m and let a be a primitive mth-root of unity. 
Let G = (g). We may choose G such that Alg = A2= A where A is the companion 
matrix of the mth-cyclotomic polynomial. 

By direct computation, 

K: J 0 I K 
X 

K 0 0 O- 0 O _I2 0- 0 I2- 
rA 0l r? A 0 0 0 0 
0 0 _0 0 _-A O _OA 

are in C(G), and since QC(G):Q = 8, they form an integral basis for QC(G). Thus, 

C(G) = {(x,iI2 + y,jA) I I < i, j < 2, xii, y,j C Z}. 

C(G) is isomorphic to M2X2(Z[a]) under I2 -4 1, A --*+ a; and Z(G) GL(2, Z[a]). 
Now Z[a] is precisely the ring of algebraic integers in Q(a), and for m = 4 or 

m = 6, Z[a] is a Euclidean domain [13]. Applying Lemma (5.11), we obtain a set 
of generators for Z(G). 

The natural homomorphism from N(G) to Aut(G) has kernel Z(G). Also jAut(G)j 
= 2. Thus N(G):Z(G) < 2. 

For m = 4, the matrix 

T_ [Ti o] r 1r= 0] 

is in N(G)\Z(G), and N(G) = (Z(G), T). For m = 6, the matrix 

N=[ 0, 1=0 0 N N1 - 

is in N(G)\Z(G), and N(G) = (Z(G), N). 
(5.33) Examples of the Dihedral Case. Let G = (A, B I Am = B2 = (AB)2 = 14). 
(a) By inspection of the list of Bravais groups, in one dihedral case of each of 

the orders 8 and 12, we may choose G such that 

Ag Alg O zAg = [i ~ 
_0 A29- 

with Al = A2. 

[2 0 0 I 0 L [0 ] O0 O- 0 O I2 0- 0 I2- 
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are in C(G), and since QC(G):Q = 4, they form an integral basis for QC(G). Thus 

C(G) = {(xjjI2) I I - i, j ] 2, Xi E Z}. 

C(G) is isomorphic to M2x2(Z) under I2 -) 1, and Z(G) _ GL(2, Z). Generating 
sets for GL(2, Z) are well known. 

Let S < Aut(G) be the subgroup of Aut(G) induced by N(G). From N(G)/Z(G)- 
S it follows that Z(G) together with a set of elements from N(G) inducing S generate 
N(G). Since S must contain the inner automorphism group, Inn(G), of G and Aut(G): 
Inn(G) = 2, we must have S = Aut(G) or S = Inn(G). In both of the two above 
cases, we have by direct computation that the outer automorphism 

:A A is not induced by N(G). 
B A3B 

Hence N(G) = (Z(G), G). 
(b) m = 6 and G can be so chosen that 

Ag = [Ajg ? 

0 IA2 - 

with 

A1A = A2A = 0 -1 

01 

A1B = -A2B = K V1 
L1 o- 

Using the technique of case (a) above, we have 

C(G) = f L 
]T [-2 -1 'T] Tl[ 

C(G) is isomorphic to R = {x[ -] I x, y, z, - 3 Z } under the map indicated by the 
notation. Thus, to determine Z(G), we need only determine the unit group U(R) 
of R. Note that U(R) = R n GL(2, Z). 

Using Lemma (5.13) and the same technique as in the proof of Lemma (5.11), 
we can show that 

U(R) =(I2, [o1 
3 

[1 0] ' [?- 

and hence obtain a generating set for Z(G). As in (a), to determine N(G) from Z(G) 
it suffices to see if 

A1 A is induced by N(G). 
IB A3B 

In this case, ' is induced by T [I 2 I2]. Thus N(G) = (Z(G), G, T). 
(c) m = 4 and G can be so chosen that 
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01 1 10 1 

0 0 -1 AB=r 1 0 

0 0 1 

Using the technique of case (a), we have 

C(G) = x, y, k, z Z 
2y 0 2k + x -y 

_ 0 2y y 2k + xi 

C(G) is isomorphic to 

R= x 2z - y x, y,k,z Z 

tLY 2k +xi 

under the map indicated by the notation. U(R) = R q GL(2, Z), and if we let t = 

2z - y, a = x + 2k, then 

U(R) = {[y ,] E GL(2, Z) (A) x(2), y t(2)}. 

Using Lemma (5.12) and the technique of the proof of Lemma (5.11), we can show 
that 

U(R) = ([ 1 '[?1 ] 
2 

[O -1) 

and hence obtain a generating set for Z(G). Since 

0! 1 0 1 

T: 
A A 

is induced by T 
I 

| |, 
B-* A3B T 10 01 

N(G) = (Z(G), G, T). 
(5.34) Example of the Case of a Klein 4-Group. Let G = (A, B I A2 = B2 = 

(AB)2 = I). 
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(a) G can be so chosen that 

B=[2 $2] A = -I4 B = [ 2 

If for X C M4X4(Z), we partition X into 2 X 2 blocks, say 

x [Xll X12] 
L X21 X22- 

then by direct computation, X E C(G) if and only if X21 = 0 and 2X12 Xll X22. 
If X C Z(G), then we must have X,1, X22 C GL(2, Z) and Xi, = X22(2) or, equiv- 
alently, X11X-1 I2(2). Hence we seek the group 

H = f[ai a12] C GL(2, Z) all a22 1(2), a21 a12 0(2) 
_a2l a22 - 

Using Lemma (5.12) and the technique in the proof of Lemma (5.11), we can 
show that 

H (0 1] - 2 1-] [0 _ 1]-I2 

Thus, since 

GL(2, Z)LA: 0 ]L 1K I 0I I 

1 20 1 1 000 1 0 
L 00 '2 ] 71 0 ,[i 2 
-1 2 0 1- -1 0 0 0- -1 0 0 0~ 

0 1 0 0 2 1 1 0 0 -1 0 -1 -I2 -I2- 

Since A is in the centre of GL(4, Z), the only possible nontrivial automorphism of 
G induced by N(G) is 

-A A 

(B A AB 
and N(G): Z(G) ? 2. ' is induced by 

-I2 I2 

T = 
_a2I2 - I2T 

and hence N(G) = (Z(G)5 T). 
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(5.4) Examples of the Block Triangular Normalizer Case. Let G be a repre- 
sentative of one of the 12 Bravais classes satisfying (4.11). 

(a) G = (A, B I A2 = B2 = (AB)2 = I4). 

G is a Klein 4-group. G can be so chosen that 

A = -I4, B-= K 

_O O O -1- 

For X E N(G), X has the block form 

[X X12] 
_ X22_ 

where X1 is a 3 X 3 matrix and X22 is a 1 X 1 matrix, say Xi, = (a,2) and X22 = (d). 
By direct computation, X is in C(G) if and only if 

a13/2 

X12 = a23/2 . 

a33 -d)/2j 

Thus X E Z(G) if and only if X C C(G) and 
(i) X 1 E GL(3, Z), 

(ii) d= ?1, 
(iii) a13 a23 =0(2), 

(iv) a33- d(2). 
The first three conditions imply condition (iv), i.e., condition (iv) is redundant. 

Using Lemma (5.12) and the technique as in the proof of Lemma (5.1 1), we can 
show that 

U = (uij) E GL(3, Z) I U13 _ 0(2)} 

l I- 0 2- -1 0 0- -1 0 0- 

N F 0 10 N2 0 1 0 ]N3 1 2 

I 0 _OO1_ _1 0 1_ _0 0 1_ 

01 0 0 1 O 1 1 

N4 0 1 0, N5 0 0oI N6= 0 1 0 

_O 11_ _0 0 1 _0 0 1 

-1 0 01 1 0 O-l 

N7 = | O N8 =O 1 0 

I O O 1_ O O -1 I 
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Thus 

(N, | NV2 | NR I | 4 0V 

N~5 ? N6 ? N7 ? N8 ? I3 ? 

As in Example (5.34), to determine N(G) from Z(G),we need only check to see if the 
automorphism 

A: 
A 

is induced by N(G). 
B AB 

By direct calculation, ' is not induced by N(G). Hence, N(G) = Z(G). 
(b) G = (A, B, C I A2 = B12 = C4 = (BC)2 = [A, B] = [A, C] = I4). G is iso- 

morphic to C2 X D8. G can be so chosen that 

A= -I4, B= - C= 

For X C N(G), X has the block form 

[Xll X121 
L X222 

where each Xi is a 2 X 2 integral matrix, say Xi, = (aij). 
By direct computation, X C C(G) if and only if X22 is a scalar matrix, say X22 - 

dIh, and 

! all + a12 -d all + a12-d 
Xi 2 =- -. 

2 a2l + a22-d a2l + a22-d] 

Thus X C Z(G) if and only if X C C(G) and 
(i) d = ?1, 

(ii) all + al2 _ a2l + a22 1(2), 
(iii) Xil 1 GL(2, Z). 

For Xi, C GL(2, Z), condition (ii) is equivalent to 
(ii') all = a22(2) and a12 _ a2l(2), and all and a2l must be of opposite parity. 
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As in Example (5.33)(c), 

C(uii) E GL(2, Z) I ull u22(2), U12 U21(2)} 

([I ?] I [? -1] [? 1]) 

Hence, 

l 0 1 O 0 -1 O O O- -1 2 1 1- 1 1- -100 - 1 0 -] 12 JL 0 12] LO02 
Z(G)=K!1 0 -1 

I I2 ? I2 ? I2 ? -I2_1 

Let S be the subgroup of Aut(G) induced by N(G). Since A is in the centre of 
GL(4, Z), it remains fixed under the action of N(G). G is the direct product of its 
subgroups (A) and (B, C). Thus every element of G can be expressed uniquely as 
AaBbCC, a - 0, 1; b = 0, 1; c - 0, 1, 2, 3. The elements of G with a = 0 and a = 1 
are of the forms 

[02 ] and [0O2 *, respectively. 

Since N(G) is block triangular, no element of the first form can be transformed into 
an element of the second form and conversely under the action of N(G). For if 

[xll X12 I2 *= [I2 *][Xll X221 
L X222 Lo *, L . X22. 

then Xi, = 0, a contradiction. 
Hence, under the action of N(G), B and C must go to elements of (B, C). There- 

fore, S is isomorphic to a subgroup of Aut(D12) - D12. Since S contains Inn(G) 
and Aut(D12):Inn(D12) = 2, to determine N(G) from Z(G), it suffices to check if the 
outer automorphism 

A - A 

T:B CB is induced by N(G). 

IC )C 

By direct computation, ' is not induced by N(G). Thus, N(G) = (Z(G), G). 
The technique used in the above example to determine N(G) from Z(G) is also 

applicable to several other Bravais groups, in particular, to a Bravais group of 
isomorphism type C2 X D12. In this case, any attempt to directly determine N(G) 
from Z(G) would be extremely difficult as jAut(C2 X D12)1 = 144. 
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